
主编推荐语
为强化学习的读者专门打造的一本深入实践的全新教程。
内容简介
全书大部分内容基于3位作者的实践经验,涵盖马尔可夫决策过程、动态规划、免模型预测、免模型控制、深度学习基础、DQN算法、DQN算法进阶、策略梯度、Actor-Critic算法、DDPG与TD3算法、PPO算法等内容,旨在帮助读者快速入门强化学习的代码实践,并辅以一套开源代码框架“JoyRL”,便于读者适应业界应用研究风格的代码。 与“蘑菇书”不同,本书对强化学习核心理论进行提炼,并串联知识点,重视强化学习代码实践的指导而不是对理论的详细讲解。
出版方
人民邮电出版社